
PHYSICAL REVIEW E 73, 056308 �2006�
Inversion formula of multifractal energy dissipation in three-dimensional
fully developed turbulence
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The concept of inverse statistics in turbulence has attracted much attention in recent years. It is argued that
the scaling exponents of the direct structure functions and the inverse structure functions satisfy an inversion
formula. This proposition has already been verified by numerical data using the shell model. However, no
direct evidence was reported for experimental three-dimensional turbulence. We propose to test the inversion
formula using experimental data of three-dimensional fully developed turbulence by considering the energy
dissipation rates instead of the usual efforts on the structure functions. The moments of the exit distances are
shown to exhibit nice multifractality. The inversion formula between the direct and inverse exponents is then
verified.
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Intermittency of fully developed isotropic turbulence
is well captured by highly nontrivial scaling laws in structure
functions and multifractal nature of energy dissipation
rates �1�. The direct �longitudinal� structure function of order
q is defined by Sq�r����v��r�q�, where �v��r� is the longi-
tudinal velocity difference of two positions with a separation
of r. The anomalous scaling properties characterized by
Sq�r�	r��q� with a nonlinear scaling exponent function ��q�
were uncovered experimentally �2�.

While the direct structure functions consider the statistical
moments of the velocity increments �v measured over a
distance r, the inverse structure functions are concerned
with the exit distance r where the velocity fluctuation ex-
ceeds the threshold �v at minimal distance �3�. An alterna-
tive quantity is thus introduced, denoted the distance struc-
ture functions �3� or inverse structure functions �4,5�, that is,
Tp��v���rp��v��. Due to the duality between the two meth-
odologies, one can intuitively expected that there is a power-
law scaling stating that Tp��v�	�v��p�, where ��p� is a
nonlinear concave function. This point is verified by the syn-
thetic data from the GOY shell model of turbulence exhibit-
ing perfect scaling dependence of the inverse structure func-
tions on the velocity threshold �3�. Although the inverse
structure functions of two-dimensional turbulence exhibit
sound multifractal nature �5�, a completely different result
was obtained for three-dimensional turbulence, where an ex-
perimental signal at high Reynolds number was analyzed and
no clear power law scaling was found in the exit distance
structure functions �4�. Instead, different experiments show
that the inverse structure functions of three-dimensional tur-
bulence exhibit clear extended self-similarity �6–8�.

For the classical binomial measures, Roux and Jensen �9�
have proven an exact relation between the direct and inverse
scaling exponents,

��q� = − p ,
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��p� = − q , �1�

which is verified by the simulated velocity fluctuations from
the shell model. This same relation is also derived intuitively
in an alternative way for velocity fields �10�. A similar deri-
vation was given for Laplace random walks as well �11�.
However, this prediction �1� is not confirmed by wind-tunnel
turbulence experiments �Reynolds numbers Re=400–1100�
�7�. We argue that this dilemma comes from the ignoring of
the fact that velocity fluctuation is not a conservative mea-
sure like the binomial measure. In other words, Eq. �1� can-
not be applied to nonconservative multifractal measures.

Actually, Eq. �1� is known as the inversion formula
and has been proven mathematically for both discontinuous
and continuous multifractal measures �12,13�. Let � be a
probability measure on �0,1� with its integral function
M�t�=�(�0, t�). Then its inverse measure can be defined by

�† = M†�s� = 
inf�t:M�t� � s� if s � 1

1 if s = 1
, �2�

where M†�s� is the inverse function of M�t�. If � is self-
similar, then the relation �=i=1

n pi�(mi
−1�·�) holds, where

mi’s are similarity maps with scale contraction ratios
ri� �0,1� and i=1

n pi=1 with pi�0. The multifractal spec-
trum of measure � is the Legendre transform f��� of 	,
which is defined by


i=1

n

pi
qri

−	 = 1. �3�

It can be shown that �12,13�, the inverse measure �† is also
self-similar with ratio ri

†= pi and pi
†=ri, whose multifractal

spectrum f†��†� is the Legendre transform of 
, which is
defined implicitly by


i=1

n

�pi
†�p�ri

†�−
 = 1. �4�
It is easy to verify that the inversion formula holds that
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	�q� = − p ,


�p� = − q . �5�

Two equivalent testable formulas follow immediately that

	�q� = − 
−1�− q� �6�

and


�p� = − 	−1�− p� . �7�

Due to the conservation nature of the measure and its inverse
in the formulation outlined above, we figure that it is better
to test the inverse formula in turbulence by considering the
energy dissipation.

Very good quality high-Reynolds turbulence data have
been collected at the S1 ONERA wind tunnel by the
Grenoble group from LEGI �2�. We use the longitudinal ve-
locity data obtained from this group. The size of the velocity
time series that we analyzed is N�1.73�107.

The mean velocity of the flow is approximately
�v�=20 m/s �compressive effects are thus negligible�. The
root-mean-square velocity fluctuation is vrms=1.7 m/s, lead-
ing to a turbulence intensity equal to I=vrms/ �v�=0.0826.
This is sufficiently small to allow for the use of Taylor’s
frozen flow hypothesis. The integral scale is approximately
4 m but is difficult to estimate precisely as the turbulent flow
is neither isotropic nor homogeneous at these large scales.

The Kolmogorov microscale � is given by �14�

�= � 2�v�2

15���v/�t�2� �1/4
=0.195 mm, where =1.5�10−5 m2 s−1

is the kinematic viscosity of air. �v /�t is evaluated by its
discrete approximation with a time step increment
�t=3.5466�10−5 s corresponding to the spatial resolution
�=0.72 mm divided by �v�, which is used to transform the
data from time to space applying Taylor’s frozen flow
hypothesis.

The Taylor scale is given by �14� �=
�v�vrms

���v/�t�2�1/2 =16.6 mm.

The Taylor scale is thus about 85 times the Kolmogorov
scale. The Taylor-scale Reynolds number is Re�=

vrms�


=2000. This number is actually not constant along the whole
data set and fluctuates by about 20%.

We have checked that the standard scaling laws previ-
ously reported in the literature are recovered with this time
series. In particular, we have verified the validity of the
power-law scaling E�k�	k−� with an exponent � very close
to 5

3 over a range more than two decades, similar to Fig. 5.4
of �1� provided by Gagne and Marchand on a similar data set
from the same experimental group. Similarly, we have
checked carefully the determination of the inertial range by
combining the scaling ranges of several velocity structure
functions �see Fig. 8.6 of ��1�, Fig. 8.6��. Conservatively, we
are led to a well-defined inertial range 60�r /��2000.

The exit distance sequence r��E�= �rj��E�� for a given
energy threshold �E can be obtained as follows. For a
velocity time series �vi=v�ti� : i=1,2 , . . . �, the energy
dissipation rate series is constructed as �Ei= �vi+1−vi�2�.
We assume that Ei is distributed uniformly in the interval

�ti , ti+1�. A right continuous energy density function
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is constructed such that e�t�=Ei for t� �ti , ti+1�. The exit
distance sequence �rj��E�� is determined successively by
k=1

j rk / �v�=inf�t :�0
t e�t�dt� j��E�. Since energy is conser-

vative, we have

rj�2�E� = r2j−1��E� + r2j��E� . �8�

With this relation, we can reduce the computational time
significantly. In order to determine ri��E�, we choose a mini-
mal threshold Emin, one tenth of the mean of �Ei�, and obtain
ri�Emin�. Then other sequences of ri for integer �E /Emin can
be easily determined with relation �8�.

In Fig. 1 is shown the empirical probability density func-
tions �pdfs� of exit distance r /� for energy increments Emin,
2Emin, and 4Emin. At first glance, the probability density
functions are roughly Gaussian, as shown by the continuous
curves in Fig. 1�a�. The value of �0 is the fitted parameter of
the mean � in the Gaussian distribution. For r /���0, the
three empirical pdf’s collapse to a single curve. However, for
large r /���0, the three empirical pdf’s differ from each
other, especially in the right-hand side tail distributions, as
shown in Fig. 1�b�. This discrepancy is the cause of the oc-
currence of multifractal behavior of exit distance, which we
shall show below.

An intriguing feature in the empirical pdf is emergence of

FIG. 1. �Color online� Empirical probability density functions of
exit distance r /� for energy increments �E=Emin, 2Emin, and 4Emin

in linear-logarithmic coordinates �a� and in logarithmic-linear coor-
dinates �b�. The value of �0 is the fitted parameter of � in the
Gaussian distribution.
small peaks observed at r /�=1,2 , . . . in the tail distributions,
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as shown in Fig. 1�b�. Comparably, the pdf of exit distance of
multinomial measure exhibits clear singular peaks. There-
fore, these small peaks in Fig. 1 can be interpreted as finite-
size truncations of singular distributions, showing the under-
lying singularity of the dissipation energy, which is
consistent with the multifractal nature of the exit distance of
dissipation energy.

According to the empirical probability density functions,
the moments of exit distance exist for both positive and
negative orders. Figure 2 illustrates the double logarithmic
plots of �Tp�r /r��1/�p−1� versus �E /E for different values of
p. Three regimes are identified. For small �E /E, we observe
power law dependence for different values of p. However,
the resultant scaling exponent function 
�p� is not distin-
guishable from a linear function. This regime is thus a
monofractal regime and is of less interest in the current
work. For large �E /E, the inverse moments saturate and de-
viate from power law. For mediate �E /E, the power-law de-
pendence is evident for all values of p, which is the multi-
fractal regime. The straight lines are best fits to the data,
whose slopes are estimates of 
�p� / �p−1�.

The inverse scaling exponent 
�p� is plotted as triangles
in Fig. 3 against order p, while the direct scaling exponent

FIG. 2. Double logarithmic plots of �Tp�r /r��1/�p−1� versus
�E /E for different values of p. The straight lines are best fits to the
data.
	�q� is shown as open circles. Note that the direct scaling
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exponent function 	�q� obtained by analyzing the same data
has been published in �15�. We can obtain the function
−	−1�−p� numerically from the 	�q� curve, which is shown as
a dashed line. One can observe that the two functions 
�p�
and −	−1�−p� coincide remarkably, which verifies the inverse
formulation �6�. Similarly, we obtained −
−1�−q� numeri-
cally from the 
�p� curve, shown as a solid line. Again, a
nice agreement between 	�q� and −
−1�−q� is observed,
which verifies �7�. We note that the difference of the com-
paring curves are within the error bars.

In summary, we have suggested to test the inversion for-
mula in three dimensional fully developed turbulence by
considering the energy dissipation rates instead of the usual
efforts on the structure functions. The moments of the exit
distances exhibit nice multifractality. We have verified the
inversion formula between the direct and inverse exponents.
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Modane were kindly provided by Y. Gagne. We are grateful
to J. Delour and J.-F. Muzy for help in preprocessing these
data. This work was partly supported by the National Basic
Research Program of China �No. 2004CB217703� and the
Project Sponsored by the Scientific Research Foundation for
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FIG. 3. �Color online� Testing the inversion formula of turbu-
lence dissipation energy.
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